Earth image
Cite this article:
unkang Guo Jie Chi. JEffect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil[J]. AGRO-ENVIRONMENTAL PROTECTION INSTITUTE MINISTRY OF AGRICULTURE, , (): 0-0

Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil

Abstract:
Background and aims Plant growth-promoting rhizobacteria (PGPR) have been widely studied for agricultural applications. One aim of this study was to isolate cadmium (Cd)-tolerant bacteria from nodules of Glycine max (L.) Merr. grown in heavy metalcontaminated soil in southwest of China. The plant growth-promoting (PGP) traits and the effects of the isolate on plant growth and Cd uptake by legume and non-legume plants in Cd-polluted soil were investigated. Methods Cd-tolerant bacteria were isolated by selective media. The isolates were identified by 16S rRNA gene and phylogenetic analysis. The PGR traits of the isolates were evaluated in vitro. Cd in soil and plant samples was determined by ICP-MS. Results One of the most Cd-tolerant bacteria simultaneously exhibited several PGP traits. Inoculation with the PGPR strain had positive impacts on contents of photosynthesis pigments and mineral nutrients (Fe or Mg) in plant leaves. The shoot dry weights of Lolium multiflorum Lam. increased significantly compared to uninoculated control. Furthermore, inoculation with the PGPR strain increased the Cd concentrations in root of L. multiflorum Lam. and extractable Cd concentrations in the rhizosphere, while the Cd concentrations in root and shoot of G. max (L.) Merr. significantly decreased. Conclusions This study indicates that inoculation with Cd-tolerant PGPR can alleviate Cd toxicity to the plants, increase Cd accumulation in L. multiflorum Lam. by enhancing Cd availability in soils and plant biomass, but decrease Cd accumulation in G. max (L.) Merr. by increasing Fe availability, thus highlighting new insight into the exploration of PGPR on Cd-contaminated soil.
Keywords:    Polydopamine    Graphene    Hydroquinone    Horseradish peroxidase    Hydrogen peroxide    Cd contamination    Phytoremediation    Plant growth-promoting rhizobacteria    Bradyrhizobium    Lolium multiflorum Lam    Glycine max (L.) Merr.   

Correlation function
PDF ( KB) Free
Print this article
Author related article